Recent Publications

Selected Publications since 1994:

Zhang X, Starnbach MN. An Excess of the Proinflammatory Cytokines IFN-γ and IL-12 Impairs the Development of the Memory CD8+ T Cell Response to Chlamydia trachomatis. J Immunol. 2015 Aug 15;195(4):1665-75. (pdf)

Mirrashidi KM, Elwell CA, Verschueren E, Johnson JR, Frando A, Von Dollen J, Rosenberg O, Gulbahce N, Jang G, Johnson T, Jäger S, Gopalakrishnan AM, Sherry J, Dunn JD, Olive A, Penn B, Shales M, Cox JS, Starnbach MN, Derre I, Valdivia R, Krogan NJ, Engel J. Global Mapping of the Inc-Human Interactome Reveals that Retromer Restricts Chlamydia Infection. Cell Host Microbe. 2015 Jul 8;18(1):109-21. (pdf)

Stary G, Olive A, Radovic-Moreno AF, Gondek D, Alvarez D, Basto PA, Perro M, Vrbanac VD, Tager AM, Shi J, Yethon JA, Farokhzad OC, Langer R, Starnbach MN, von Andrian UH. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science. 2015 Jun 19;348(6241):aaa8205. (pdf)

Nogueira CV, Zhang X, Giovannone N, Sennott EL, Starnbach MN. Protective Immunity against Chlamydia trachomatis Can Engage Both CD4+ and CD8+ T Cells and Bridge the Respiratory and Genital Mucosae. J Immunol. 2015 Mar 1;194(5):2319-29. (pdf)

Davila SJ, Olive AJ, Starnbach MN. Integrin α4β1 is necessary for CD4+ T cell-mediated protection against genital Chlamydia trachomatis infection. J Immunol. 2014 May 1;192(9):4284-93. (pdf)

Olive AJ, Haff MG, Emanuele MJ, Sack LM, Barker JR, Elledge SJ, Starnbach MN. Chlamydia trachomatis-induced alterations in the host cell proteome are required for intracellular growth. Cell Host Microbe. 2014 Jan 15;15(1):113-24. (pdf)

Fankhauser SC, Starnbach MN. PD-L1 limits the mucosal CD8+ T cell response to Chlamydia trachomatis. J Immunol. 2014 Feb 1;192(3):1079-90. (pdf)

Reiling JH, Olive AJ, Sanyal S, Carette JE, Brummelkamp TR, Ploegh HL, Starnbach MN, Sabatini DM. A CREB3-ARF4 signalling pathway mediates the response to Golgi stress and susceptibility to pathogens. Nat Cell Biol. 2013 Dec;15(12):1473-85. (pdf)

McCluskey AJ, Olive AJ, Starnbach MN, Collier RJ. Targeting HER2-positive cancer cells with receptor-redirected anthrax protective antigen. Mol Oncol. 2013 Jun;7(3):440-51. (pdf)

Jehl SP, Nogueira CV, Zhang X, Starnbach MN. IFNγ inhibits the cytosolic replication of Shigella flexneri via the cytoplasmic RNA sensor RIG-I. PLoS Pathog. 2012;8(8):e1002809. (pdf)

Gondek DC, Olive AJ, Stary G, Starnbach MN. CD4+ T cells are necessary and sufficient to confer protection against Chlamydia trachomatis infection in the murine upper genital tract. J Immunol. 2012 Sep 1;189(5):2441-9. (pdf)

Rosmarin DM, Carette JE, Olive AJ, Starnbach MN, Brummelkamp TR, Ploegh HL. Attachment of Chlamydia trachomatis L2 to host cells requires sulfation. Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):10059-64. (pdf)

Lamousé-Smith ES, Tzeng A, Starnbach MN. The intestinal flora is required to support antibody responses to systemic immunization in infant and germ free mice. PLoS One. 2011;6(11):e27662. (pdf)

Coers J, Gondek DC, Olive AJ, Rohlfing A, Taylor GA, Starnbach MN. Compensatory T cell responses in IRG-deficient mice prevent sustained Chlamydia trachomatis infections. PLoS Pathog. 2011 Jun;7(6):e1001346. (pdf)

ArrowJehl SP, Doling AM, Giddings KS, Phalipon A, Sansonetti PJ, Goldberg MB, Starnbach MN. Antigen-specific CD8(+) T cells fail to respond to Shigella flexneri. Infect Immun. 2011 May;79(5):2021-30. (pdf)

Olive AJ, Gondek DC, Starnbach MN. CXCR3 and CCR5 are both required for T cell-mediated protection against C. trachomatis infection in the murine genital mucosa. Mucosal Immunol. 2011 Mar;4(2):208-16. Epub 2010 Sep 15. (pdf)

Bergman MA, Loomis WP, Mecsas J, Starnbach MN, Isberg RR. CD8(+) T cells restrict Yersinia pseudotuberculosis infection: bypass of anti-phagocytosis by targeting antigen-presenting cells. PLoS Pathog. 2009 Sep;5(9):e1000573. Epub 2009 Sep 4. (pdf)

Gondek DC, Roan NR, Starnbach MN. T cell responses in the absence of IFN-gamma exacerbate uterine infection with Chlamydia trachomatis. J Immunol. 2009 Jul 15;183(2):1313-9. Epub 2009 Jun 26. (pdf)

Coers J, Starnbach MN, Howard JC. Modeling infectious disease in mice: co-adaptation and the role of host-specific IFNgamma responses. PLoS Pathog. 2009 May;5(5):e1000333. Epub 2009 May 29. (pdf)

Henry SC, Daniell XG, Burroughs AR, Indaram M, Howell DN, Coers J, Starnbach MN, Hunn JP, Howard JC, Feng CG, Sher A, Taylor GA. Balance of Irgm protein activities determines IFN-gamma-induced host defense. J Leukoc Biol. 2009 May;85(5):877-85. Epub 2009 Jan 27. (pdf)

Nunes JK, Starnbach MN, Wirth DF. Secreted antibody is required for immunity to Plasmodium berghei. Infect Immun. 2009 Jan;77(1):414-8. Epub 2008 Nov 10. (pdf)

Shaw, CA, Starnbach, MN. Both CD4+ and CD8+ T cells Respond to Antigens Fused to Anthrax Lethal Toxin. Infection and Immunity, 2008, 76:2603-2611. (pdf)

Coers, J, Bernstein-Hanley, I, Grotsky, D, Parvanova, I, Howard, JC, Taylor, GA, Dietrich, WF, Starnbach, MN. Chlamydia muridarum evades growth restriction by the IFNg inducible host resistance factor Irgb10. Journal of Immunology, 2008, 180:6237-6245. (pdf)

Roan, NR, Starnbach, MN, Conquering sexually transmitted diseases.  Nature Reviews Immunology, 2008;8:313-317. (pdf)

van der Velden, AWM, Dougherty, JT, Starnbach, MN. Down-modulation of T cell receptor expression by Salmonella enterica serovar Typhimurium. Journal of Immunology, 2008, 180:5569-5574. (pdf)

Roan, NR, Starnbach, MN.  Immune-mediated control of Chlamydia infection.  Cellular Microbiology, 2008;10:9-19. (pdf)

Shaw, CA, Starnbach, MN. Antigen Delivered by Anthrax Lethal Toxin Induces the Development of Memory CD8+ T Cells that can be Rapidly Boosted and Display Effector Functions, Infection and Immunity, 2008, 76:1214-1222. (pdf)

Grotenbreg, GM, Roan, NR, Guillen, E. Meijers, R, Wang, J-H, Bell, GW, Starnbach, MN, Ploegh, HL.  Discovery of CD8+ T-cell epitopes in Chlamydia trachomatis infection through use of caged class I MHC tetramers. Proceedings of the National Academy of Sciences, USA, 2008, 105:3831-3836. (pdf)

Starnbach, MN, medical editor, The Truth About Your Immune System: What You Need To Know, Harvard Health Publications, 2007. (link)

Balsara ZR, Starnbach MN.  CD8+ T cell recognition of cells infected with Chlamydia.  In Chlamydia: Genomics, Pathogenesis and Implications for Control, Bavoil PM & Wyrick PB (eds), Horizon Scientific Press, Norfolk, United Kingdom; 2007. p. 381-412.

Kramer, RW, Slagowski,NL, Eze, NA, Giddings KS, Morrison, MF, Siggers, KA, Starnbach, MN, Lesser, CF.  Yeast functional genomic screens identify a bacterial protein that downregulates innate immunity. PLOS Pathogens, 2007. (pdf)

Hang, HC, Loureiro, J, Spooner, E, van der Velden, A, Maehr, R, Pollington, AM, Kim, Y-M, Starnbach, MN, Ploegh, HL.  Mechanism-based probe for the visualization and proteomic analysis of Cathepsin cysteine proteases in living cells.  ACS Chemical Biology, 2006, 1:713-723. (pdf)

Roan, NR, Starnbach, MN.  Antigen-specific CD8+ T cells respond to Chlamydiatrachomatis in the genital mucosa.  Journal of Immunology, 2006, 177:7974-7979. (pdf)

D’Orazio, SEF, Troese, MJ, Starnbach, MN.  Cytosolic localization of Listeria monocytogenes triggers an early IFNg response by CD8+ T cells that correlates with innate resistance to infection. Journal of Immunology, 2006, 177:7146-7154. (pdf)

Balsara, ZR, Misaghi, S, Lafave, JN, Starnbach, MN. Chlamydia trachomatis infection induces cleavage of the mitotic cyclin B1.  Infection and Immunity, 2006, 74:5602-5608. (pdf)

Bernstein-Hanley, I, Coers, J, Balsara, ZR, Taylor, GA, Starnbach, MN, Dietrich, WF.  The p47 GTPases IGTP and Irgb10 map to the Chlamydia trachomatis susceptibility locus Ctrq-3 and mediate cellular resistance in mouse.  Proceedings of the National Academy of Sciences, USA, 2006, 103(38):14092-14097. (pdf)

Loomis, WP, Starnbach, MN.  Chlamydia trachomatis infection alters the development of memory CD8+ T cells.  Journal of Immunology, 2006, 177:4021-4027. (pdf)

Roan, NR, Gierahn, T, Higgins, DE, Starnbach, MN.  Monitoring the T cell response to genital tract infection.  Proceedings of the National Academy of Sciences, USA, 2006, 103:12069-12074. (pdf)

Misaghi, S, Balsara, ZR, Catic, A, Spooner, E, Ploegh, HL, Starnbach, MN.  Chlamydia trachomatis-derived deubiqitinating enzymes in mammalian cells during infection, Molecular Microbiology, 2006, 61:42-50. (pdf)

Balsara, ZR, Roan,NR, Steele, LN, Starnbach, MN. Developmental regulation of the C. trachomatis Cap1 protein, a CD8+ T cell antigen, The Journal of Infectious Diseases, 2006, 193:1459-1463. (pdf)

D’Orazio, SEF, Shaw,CA, Starnbach, MN. H2-M3 restricted CD8+ T cells are not required for MHC class Ib restricted immunity against Listeria monocytogenes, Journal of Experimental Medicine, 2006, 203:383-391. (pdf)

Bernstein-Hanley, I, Balsara, ZR, Ulmer,W, Coers, J, Starnbach, MN, Dietrich, WF. Genetic analysis of susceptibility to Chlamydia trachomatis in mouse, Genes and Immunity, 2006, 7:122-129. (pdf)

Shaw, CA, Starnbach, MN. Stimulation of CD8 T cells following diphtheria toxin-mediated antigen delivery into dendritic cells.  Infection and Immunity, 2006, 74:1001-1008. (pdf)

van der Velden, AW, Copass, MK, and Starnbach, MN.  Salmonella inhibit T cell proliferation through a direct, contact-dependent immunosuppressive effect.  Proceedings of the National Academy of Sciences, USA, 2005, 102:17769-17774. (pdf)

Cavanagh, LL, Bonasio, R, Mazo, IB, Halin, C, Cheng, G, van der Velden, AW, Cariappa, A, Chase, C, Russell, P, Starnbach, MN, Koni, PA, Pillai, S, Weninger, W, and von Andrian, UH. Activation of bone marrow-resident memory T cells by circulating, antigen-bearing  dendritic cells. Nat Immunol 2005;6:1029-1037. (pdf)

Ho, T.D. and M.N. Starnbach. The Salmonella-encoded type III secretion system can translocate Chlamydia proteins. Infection and Immunity, 2005;73:905-911. (pdf)

Starnbach, MN, medical editor, The Truth About Your Immune System: What You Need To Know, Harvard Health Publications, 2004. (link)

Steele, L.N., Z.R. Balsara, M.N. Starnbach. Hematopoietic cells are required to initiate a Chlamydia trachomatis-specific CD8+ T cell response. Journal of Immunology, 2004;173:6327-6337. (pdf)

van der Velden, A.W.M., M.Velasquez, M.N. Starnbach. Salmonella rapidly kill dendritic cells via a caspase-1-dependent mechanism. Journal of Immunology, 2003;171:6742-6749. (pdf)

D'Orazio, S.E.F., M. Velasquez, N.R. Roan, O. Naveiras-Torres, M.N. Starnbach. The Listeria monocytogenes lemA gene product is not required for intracellular infection or to activate fMIGWII-specific T cells. Infection and Immunity, 2003;71:6721-6727. (pdf)

Starnbach, M.N., W.P. Loomis, P. Ovendale, D. Regan, B. Hess, M.R. Alderson, S.P. Fling. An inclusion membrane protein from Chlamydia trachomatis enters the MHC class I pathway and stimulates a CD8+ T cell response. Journal of Immunology, 2003;171:4742-4749. (pdf)

D'Orazio, S.E.F., D.G. Halme, H.L. Ploegh, M.N. Starnbach. Class Ia MHC-deficient BALB/c mice generate CD8+ T cell-mediated protective immunity against Listeria monocytogenes infection, Journal of Immunology, 2003;171:291-298. (pdf)

Shaw, C.A., M.N. Starnbach. Using modified bacterial toxins to deliver vaccine antigens. ASM News, 2003;69:384-389. (pdf)

Starnbach, M.N., R.J. Collier. Anthrax delivers a lethal blow to host immunity. Nature Medicine, 2003;9:996-997. (pdf)

Loomis, W.P., and M. N. Starnbach. 2002. T-cell responses to Chlamydia trachomatis. Current Opinion in Microbiology, 5:87-91. (pdf)

Mogridge, J., and M. N. Starnbach. 2002. Anthrax Toxin. In Encyclopedia of Molecular Medicine. T. E. Creighton (ed.). John Wiley & Sons, New York, NY. pp. 212-214.

Boyartchuk V.L., K.W. Broman, R.E. Mosher, S.E. D'Orazio, M.N. Starnbach, and W.F. Dietrich. 2001. Multigenic control of Listeria monocytogenes susceptibility in mice. Nature Genetics, 27:259-60. (pdf)

Fling, S., A. Sutherland, L. Steele, B. Hess, S. D'Orazio, J-F. Maisonneuve, M. Lampe, P. Probst, and M. Starnbach. 2001. CD8+ T-cells Recognize a Novel Inclusion Membrane Associated Protein from the Vacuolar Pathogen Chlamydia trachomatis. Proceedings of the National Academy of Sciences, USA, 98:1160-1165.

Zarozinski, C. C., R. J. Collier, and M. N. Starnbach. 2000. The use of anthrax toxin fusions to stimulate immune responses. Methods in Enzymology, 326:542-551.

Fling S, A. Sutherland, L. Steele, B. Hess, J. Maisonneuve, M. Lampe, P. Probst, and M. Starnbach. 2000. The Chlamydia trachomatis Cap1 protein is associated with the inclusion membrane and contains a CD8+ T-cell epitope. In Chlamydia Research. P. Saikku (ed.). University of Helsinki, Helsinki, Finland, p. 212.(pdf)

Lu, Y., R. Friedman, N. Kushner, A. Doling, L. Thomas, N. Touzjian, M. Starnbach, and J. Lieberman. 2000. Genetically modified anthrax lethal toxin safely delivers whole HIV protein antigens into the cytosol to induceT cell immunity. Proceedings of the National Academy of Sciences, USA, 97:8027-32.(pdf)

Straley, S. C., and M. N. Starnbach. 2000. Yersinia: Strategies that thwart immune defenses. In Effects of Microbes on the Immune system. M. W. Cunningham and R. S. Fujinami (eds.). Lippincott Williams & Wilkins, Philadelphia, PA. pp. 71-92.

Doling, A. M., J. D. Ballard, H. Shen, K. M. Krishna, R. Ahmed, R. J. Collier, and M. N. Starnbach. 1999. Cytotoxic T-lymphocyte epitopes fused to anthrax toxin induce protective antiviral immunity. Infection and Immunity, 67:3290-3296.(pdf)

Lampe, M. F., M. J. Bevan, C. B. Wilson, and M. N. Starnbach. 1998. Gamma interferon production by cytotoxic T-lymphocytes is required for resolution of Chlamydia trachomatis infection. Infection and Immunity, 66:5457-5461.(pdf)

Ballard, J. D., R. J. Collier, and M. N. Starnbach. 1998. Anthrax toxin as a molecular tool for CTL vaccination: disulfide linked epitopes, multiple injections, and the role of CD4+ cells. Infection and Immunity, 66:4696-4699.(pdf)

Lampe, M. F., M. J. Bevan, C. B. Wilson, and M. N. Starnbach. 1998. The role of interferon-g in the resolution of Chlamydia trachomatis infection by cytotoxic T-lymphocytes. In Chlamydial Infections. R. S. Stephens, G. I. Byrne, G. Christiansen, I. N. Clarke, J. T. Grayston, R. G. Rank, G. L. Ridgeway, P. Saikku, J. Schachter, W. E. Stamm (eds.). pp. 498-501.

Ballard, J. D., A. M. Doling, K. Beauregard, R.J. Collier and M. N. Starnbach. 1998. Anthrax toxin mediated delivery in vivo and in vitro of a cytotoxic T-lymphocyte epitope from ovalbumin. Infection and Immunity, 66:615-619.(pdf)

Ballard, J. D., R. J. Collier, and M. N. Starnbach. 1996. Anthrax toxin mediated delivery of a cytotoxic T-cell epitope in vivo. Proceedings of the National Academy of Sciences, USA, 93:12531-12534.(pdf)

Starnbach, M. N, M. J. Bevan, and M. F. Lampe. 1995. Murine cytotoxic T-lymphocytes induced following Chlamydia trachomatis intraperitoneal or genital tract infection respond to cells infected with multiple serovars. Infection and Immunity, 63:3527-3530.(pdf)

Starnbach, M. N, M. J. Bevan, and M. F. Lampe. 1994. Protective cytotoxic T-lymphocytes are induced during murine infection with Chlamydia trachomatis. Journal of Immunology, 153:5183-5189.(pdf)

Starnbach, M. N, and M. J. Bevan. 1994. Cells infected with Yersinia present an epitope to class I MHC restricted cytotoxic T-lymphocytes. Journal of Immunology 153:1603-1612.(pdf)


Department of Microbiology | Harvard Medical School | 77 Ave Louis Pasteur, Boston, MA 02115